Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.015
Filtrar
1.
J Photochem Photobiol B ; 254: 112902, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569457

RESUMO

The effect of low artificial Ultraviolet (UV) on the DNA methylation remains controversial. This study addresses how differential photoperiods of UV radiation affect the biochemical and molecular behaviors of Cannabis indica cell suspension cultures. The cell suspensions were illuminated with the compact fluorescent lamps (CFL), emitting a combination of 10% UVB, 30% UVA, and the rest visible wavelengths for 0, 4, 8, and 16 h. The applied photoperiods influenced cell morphological characteristics. The 4 h photoperiod was the most effective treatment for improving biomass, growth index and cell viability percentage while these indices remained non-significant in the 16 h treatment. The methylation-sensitive amplified polymorphism (MASP) assay revealed that the UV radiation was epigenetically accompanied by DNA hypermethylation. The light-treated cells significantly displayed higher relative expression of the cannabidiolic| acid synthase (CBDAS) and delta9-tetrahydrocannabinolic acid synthase (THCAS) genes about 4-fold. The expression of the olivetolic acid cyclase (OAC) and olivetol synthase (OLS) genes exhibited an upward trend in response to the UV radiation. The light treatments also enhanced the proline content and protein concentration. The 4 h illumination was significantly capable of improving the cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) concentrations, in contrast with 16 h. By increasing the illumination exposure time, the activity of the phenylalanine ammonia-lyase (PAL) enzyme linearly upregulated. The highest amounts of the phenylpropanoid derivatives were observed in the cells cultured under the radiation for 4 h. Taken collective, artificial UV radiation can induce DNA methylation modifications and impact biochemical and molecular differentiation in the cell suspensions in a photoperiod-dependent manner.


Assuntos
Canabinoides , Cannabis , Cannabis/genética , Cannabis/química , Canabinoides/farmacologia , Dronabinol/farmacologia , Metilação de DNA , Raios Ultravioleta , Proliferação de Células
2.
CNS Drugs ; 38(5): 375-385, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38597988

RESUMO

BACKGROUND: Disordered autonomic nervous system regulation and supraspinal pain inhibition have been repeatedly described in chronic pain. We aimed to explore the effects of δ-9-tetrahydrocannabinol (THC), an emerging treatment option, on autonomic nervous system and central pain modulation measures in patients with chronic pain. METHODS: Twelve male patients with chronic radicular neuropathic pain participated in a randomized, double-blind, crossover, placebo-controlled, single-administration trial. Low/high frequency (LF/HF) heart rate variability (HRV) ratio and conditioned pain modulation (CPM) response were measured and resting-state functional magnetic resonance imaging (MRI) was performed at baseline and after sublingual administration of either 0.2 mg/kg oral THC or placebo. RESULTS: THC significantly reduced the LF/HF ratio compared with placebo (interaction effect F(1,11) = 20.5; p < 0.005) and significantly improved CPM responses (interaction effect F(1,9) = 5.2; p = 0.048). The THC-induced reduction in LF/HF ratio correlated with increased functional connectivity between the rostral ventrolateral medulla and the dorsolateral prefrontal cortex [T(10) = 6.4, cluster p-FDR < 0.005]. CONCLUSIONS: THC shifts the autonomic balance towards increased parasympathetic tone and improves inhibitory pain mechanisms in chronic pain. The increase in vagal tone correlates with connectivity changes in higher-order regulatory brain regions, suggesting THC exerts top-down effects. These changes may reflect a normalizing effect of THC on multiple domains of supraspinal pain dysregulation. CLINICAL TRIAL REGISTRY NUMBER: NCT02560545.


Assuntos
Dor Crônica , Neuralgia , Humanos , Masculino , Dronabinol/farmacologia , Dronabinol/uso terapêutico , Dor Crônica/tratamento farmacológico , Neuralgia/tratamento farmacológico , Encéfalo , Método Duplo-Cego , Estudos Cross-Over
3.
ACS Chem Neurosci ; 15(8): 1669-1683, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38575140

RESUMO

The cannabinoid receptor 1 (CB1) is famous as the target of Δ9-tetrahydrocannabinol (THC), which is the active ingredient of marijuana. Suppression of CB1 is frequently suggested as a drug target or gene therapy for many conditions (e.g., obesity, Parkinson's disease). However, brain networks affected by CB1 remain elusive, and unanticipated psychological effects in a clinical trial had dire consequences. To better understand the whole brain effects of CB1 suppression we performed in vivo imaging on mice under complete knockout of the gene for CB1 (cnr1-/-) and also under the CB1 inverse agonist rimonabant. We examined white matter structural changes and brain function (network activity and directional uniformity) in cnr1-/- mice. In cnr1-/- mice, white matter (in both sexes) and functional directional uniformity (in male mice) were altered across the brain but network activity was largely unaltered. Conversely, under rimonabant, functional directional uniformity was not altered but network activity was altered in cortical regions, primarily in networks known to be altered by THC (e.g., neocortex, hippocampal formation). However, rimonabant did not alter many brain regions found in both our cnr1-/- results and previous behavioral studies of cnr1-/- mice (e.g., thalamus, infralimbic area). This suggests that chronic loss of cnr1 is substantially different from short-term suppression, subtly rewiring the brain but largely maintaining the network activity. Our results help explain why pathological mutations in CB1 (e.g., chronic pain) do not always provide insight into the side effects of CB1 suppression (e.g., clinical depression), and thus urge more preclinical studies for any drugs that suppress CB1.


Assuntos
Agonismo Inverso de Drogas , Piperidinas , Feminino , Camundongos , Masculino , Animais , Rimonabanto/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Camundongos Knockout , Encéfalo , Receptores de Canabinoides , Receptor CB1 de Canabinoide/genética , Dronabinol/farmacologia
4.
Molecules ; 29(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542886

RESUMO

Cannabis sativa is one of the oldest plants utilized by humans for both economic and medical purposes. Although the use of cannabis started millennia ago in the Eastern hemisphere, its use has moved and flourished in the Western nations in more recent centuries. C. sativa is the source of psychoactive cannabinoids that are consumed as recreational drugs worldwide. The C21 aromatic hydrocarbons are restricted in their natural occurrence to cannabis (with a few exceptions). Delta-9-tetrahydrocannabinol (Δ9-THC) is the main psychoactive component in cannabis, with many pharmacological effects and various approved medical applications. However, a wide range of side effects are associated with the use of Δ9-THC, limiting its medical use. In 1966, another psychoactive cannabinoid, Delta-8-tetrahydrocannabinol (Δ8-THC) was isolated from marijuana grown in Maryland but in very low yield. Δ8-THC is gaining increased popularity due to its better stability and easier synthetic manufacturing procedures compared to Δ9-THC. The passing of the U.S. Farm Bill in 2018 led to an increase in the sale of Δ8-THC in the United States. The marketed products contain Δ8-THC from synthetic sources. In this review, methods of extraction, purification, and structure elucidation of Δ8-THC will be presented. The issue of whether Δ8-THC is a natural compound or an artifact will be discussed, and the different strategies for its chemical synthesis will be presented. Δ8-THC of synthetic origin is expected to contain some impurities due to residual amounts of starting materials and reagents, as well as side products of the reactions. The various methods of analysis and detection of impurities present in the marketed products will be discussed. The pharmacological effects of Δ8-THC, including its interaction with CB1 and CB2 cannabinoid receptors in comparison with Δ9-THC, will be reviewed.


Assuntos
Canabinoides , Cannabis , Dronabinol/análogos & derivados , Alucinógenos , Humanos , Dronabinol/farmacologia , Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Alucinógenos/farmacologia
5.
Asian Pac J Cancer Prev ; 25(3): 839-856, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546067

RESUMO

OBJECTIVE: The purpose of this study is to comparatively analyze the anticancer properties of Tetrahydrocannabinol (THC), Cannabidiol (CBD), and Tetrahydrocannabivarin (THCV) using In silico tools. METHODS: Using SwissADME and pkCSM, the physicochemical and pharmacokinetics properties of the cannabinoids were evaluated. Protox-II was utilized for the assessment of their cytotoxicity. The chemical-biological interactions of the cannabinoids were also predicted using the Way2Drug Predictive Server which comprises Acute Rat Toxicity, Adver-Pred, CLC-Pred, and Pass Target Prediction. RESULTS: Both physicochemical and drug-likeness analysis using SwissADME favored THCV due to high water solubility and lower MLOGP value. On the other hand, ADMET assessment demonstrated that THC and CBD have good skin permeability while both THC and THCV exhibited better BBB permeability and have low inhibitory activity on the CYP1A2 enzyme. Furthermore, toxicity predictions by Protox-II revealed that CBD has the lowest probability of hepatotoxicity, carcinogenicity, and immunotoxicity. Contrarily, it has the highest probability of being inactive in mutagenicity and cytotoxicity. Additionally, CLC results revealed that CBD has the highest probability against lung carcinoma. The rat toxicity prediction showed that among the cannabinoids, THCV had the lowest LD50 concentration in rat oral and IV. CONCLUSION: Overall, in silico predictions of the three cannabinoid compounds revealed that they are good candidates for oral drug formulation. Among the three cannabinoids, THCV is an excellent anticancer aspirant for future chemotherapy with the most favorable results in drug-likeness and ADMET analysis, pharmacological properties evaluation, and cytotoxicity assessment results. Further study on bioevaluation of compounds is needed to elucidate their potential pharmacological activities.


Assuntos
Canabidiol , Canabinoides , Ratos , Animais , Canabidiol/farmacologia , Dronabinol/farmacologia , Protoporfirinogênio Oxidase , Canabinoides/farmacologia , Avaliação de Resultados em Cuidados de Saúde
6.
J Agric Food Chem ; 72(13): 6921-6930, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38516700

RESUMO

Copper (Cu) is an element widely used as a pesticide for the control of plant diseases. Cu is also known to influence a range of plant secondary metabolisms. However, it is not known whether Cu influences the levels of the major metabolites in hemp (Cannabis sativa L.), tetrahydrocannabinol (THC) and cannabidiol (CBD). This study investigated the impact of Cu on the levels of these cannabinoids in two hemp cultivars, Wife and Merlot, under field conditions, as a function of harvest time (August-September), Cu type (nano, bulk, or ionic), and dose (50, 100, and 500 ppm). In Wife, Cu caused significant temporal increases in THC and CBD production during plant growth, reaching increases of 33% and 31% for THC and 51% and 16.5% for CBD by harvests 3 and 4, respectively. CuO nanoparticles at 50 and 100 ppm significantly increased THC and CBD levels, compared to the control, respectively, by 18% and 27% for THC and 19.9% and 33.6% for CBD. These nanospecific increases coincided with significantly more Cu in the inflorescences (buds) than in the control and bulk CuO treatments. Contrarily, no temporal induction of the cannabinoids by Cu was noticed in Merlot, suggesting a cultivar-specific response to Cu. However, overall, in Merlot, Cu ions, but not particulate Cu, induced THC and CBD levels by 27% and 36%, respectively, compared to the control. Collectively, our findings provide information with contrasting implications in the production of these cannabinoids, where, dependent on the cultivar, metabolite levels may rise above the 0.3% regulatory threshold for THC but to a more profitable level for CBD. Further investigations with a wider range of hemp cultivars, CuO nanoparticle (NP) doses, and harvest times would clarify the significance and broader implications of the findings.


Assuntos
Canabidiol , Canabinoides , Cannabis , Dronabinol/farmacologia , Cobre
7.
Artigo em Inglês | MEDLINE | ID: mdl-38417478

RESUMO

BACKGROUND: The cannabis plant contains several cannabinoids, and many terpenoids that give cannabis its distinctive flavoring and aroma. Δ9-Tetrahydrocannabinol (Δ9-THC) is the plant's primary psychoactive constituent. Given the abuse liability of Δ9-THC, assessment of the psychoactive effects of minor cannabinoids and other plant constituents is important, especially for compounds that may be used medicinally. This study sought to evaluate select minor cannabinoids and terpenes for Δ9-THC-like psychoactivity in mouse Δ9-THC drug discrimination and determine their binding affinities at CB1 and CB2 receptors. METHODS: Δ9-THC, cannabidiol (CBD), cannabinol (CBN), cannabichromene (CBC), cannabichromenevarin (CBCV), Δ8-tetrahydrocannabinol (Δ8-THC), (6aR,9R)-Δ10-tetrahydrocannabinol [(6aR,9R)-Δ10-THC], Δ9-tetrahydrocannabinol varin (THCV), ß-caryophyllene (BC), and ß-caryophyllene oxide (BCO) were examined. RESULTS: All minor cannabinoids showed measurable cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor binding, with CBC, CBCV, and CBD, showing the weakest CB1 receptor binding affinity. BC and BCO exhibited negligible affinity for both CB1 and CB2 receptors. In drug discrimination, only Δ8-THC fully substituted for Δ9-THC, while CBN and (6aR,9R)-Δ10-THC partially substituted for Δ9-THC. THCV and BCO did not alter the discriminative stimulus effects of Δ9-THC. CONCLUSION: In summary, only some of myriad cannabinoids and other chemicals found in the cannabis plant bind potently to the identified cannabinoid receptors. Further, only four of the compounds tested herein [Δ9-THC, Δ8-THC, (6aR,9R)-Δ10-THC, and CBN] produced Δ9-THC-like discriminative stimulus effects, suggesting they may possess cannabimimetic subjective effects. Given that the medicinal properties of phytocannabinoids and terpenoids are being investigated scientifically, delineation of their potential adverse effects, including their ability to produce Δ9-THC-like intoxication, is crucial.


Assuntos
Canabidiol , Canabinoides , Cannabis , Camundongos , Animais , Dronabinol/farmacologia , Terpenos/farmacologia , Canabinoides/farmacologia , Canabinoides/metabolismo , Cannabis/metabolismo , Canabidiol/farmacologia , Canabinol/farmacologia
8.
J Psychopharmacol ; 38(3): 247-257, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332655

RESUMO

BACKGROUND: Despite increasing medical cannabis use, research has yet to establish whether and to what extent products containing delta-9-tetrahydrocannabinol (THC) impact driving performance among patients. Stable doses of prescribed cannabinoid products during long-term treatment may alleviate clinical symptoms affecting cognitive and psychomotor performance. AIM: To examine the effects of open-label prescribed medical cannabis use on simulated driving performance among patients. METHODS: In a semi-naturalistic laboratory study, 40 adults (55% male) aged between 23 and 80 years, consumed their own prescribed medical cannabis product. Driving performance outcomes including standard deviation of lateral position (SDLP), the standard deviation of speed (SDS), mean speed and steering variability were evaluated using the Forum8 driving simulator at baseline (pre-dosing), 2.5 h and 5 -h (post-dosing). Perceived driving effort (PDE) was self-reported after each drive. Oral fluid and whole blood samples were collected at multiple timepoints and analysed for THC via liquid chromatography-mass spectrometry. RESULTS: A significant main effect of time was observed for mean speed (p = 0.014) and PDE (p = 0.020), with patients displaying modest stabilisation of vehicle control, increased adherence to speed limits and reductions in PDE post-dosing, relative to baseline. SDLP (p = 0.015) and PDE (p = 0.043) were elevated for those who consumed oil relative to flower-based products. Detectable THC concentrations were observed in oral fluid at 6-h post-dosing (range = 0-24 ng/mL). CONCLUSIONS: This semi-naturalistic study suggests that the consumption of medical cannabis containing THC (1.13-39.18 mg/dose) has a negligible impact on driving performance when used as prescribed.


Assuntos
Condução de Veículo , Cannabis , Alucinógenos , Fumar Maconha , Maconha Medicinal , Adulto , Humanos , Masculino , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Feminino , Maconha Medicinal/farmacologia , Dronabinol/farmacologia , Alucinógenos/farmacologia , Desempenho Psicomotor , Cannabis/efeitos adversos , Fumar Maconha/efeitos adversos
9.
Eur J Med Chem ; 268: 116164, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417219

RESUMO

Cannabinoids have emerged as compelling candidates for medicinal applications, notably following the recent approval of non-psychoactive cannabidiol (CBD) as a medicine. This endorsement has stimulated a growing interest in this class of compounds for drug discovery. Within the cannabis plant, a rich reservoir of over 125 compounds exists. Tetrahydrocannabinol (THC), a member of the dibenzopyran class, is widely recognized for its psychoactive effects. Conversely, the furanoid class, represented by cannabielsoin-type (CBE) and cannabifuran-type (CBF) compounds, has not been reported with psychoactivity and demonstrates a spectrum of pharmacological potential. The transition from the pyran structure of THC to the furan structure of CBE seems to mark a shift from psychoactive to non-psychoactive properties, but a comprehensive examination of other members in this class is essential for a complete understanding. Building on these observations, our thorough review delves into the subject, offering a comprehensive exploration of furanoid cannabinoids, covering aspects such as their biosynthesis, classification, synthesis, and medicinal potential. The aim of this review is to encourage and catalyze increased research focus in this promising area of cannabinoid exploration.


Assuntos
Canabidiol/análogos & derivados , Canabinoides , Cannabis , Canabinoides/farmacologia , Cannabis/química , Dronabinol/farmacologia
10.
Sci Rep ; 14(1): 4343, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383569

RESUMO

Antibiotic resistance in staphylococcal strains and its impact on public health and agriculture are global problems. The development of new anti-staphylococcal agents is an effective strategy for addressing the increasing incidence of bacterial resistance. In this study, ethanolic extracts of Cannabis sativa L. made from plant parts harvested during the whole vegetation cycle under various nutritional treatments were assessed for in vitro anti-staphylococcal effects. The results showed that all the cannabis extracts tested exhibited a certain degree of growth inhibition against bacterial strains of Staphylococcus aureus, including antibiotic-resistant and antibiotic-sensitive forms. The highest antibacterial activity of the extracts was observed from the 5th to the 13th week of plant growth across all the nutritional treatments tested, with minimum inhibitory concentrations ranging from 32 to 64 µg/mL. Using HPLC, Δ9-tetrahydrocannabinolic acid (THCA) was identified as the most abundant cannabinoid in the ethanolic extracts. A homolog of THCA, tetrahydrocannabivarinic acid (THCVA), reduced bacterial growth by 74%. These findings suggest that the cannabis extracts tested in this study can be used for the development of new anti-staphylococcal compounds with improved efficacy.


Assuntos
Canabinoides , Cannabis , Alucinógenos , Canabinoides/farmacologia , Extratos Vegetais/farmacologia , Staphylococcus , Dronabinol/farmacologia , Antibacterianos/farmacologia , Alucinógenos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Etanol/farmacologia
11.
J Nat Prod ; 87(2): 167-175, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38355400

RESUMO

(-)-trans-Δ9-Tetrahydrocannabinol (trans-(-)-Δ9-THC) has shown neuroprotective potential, but its medicinal benefits are not fully exploited due to the limitations of psychoactive properties. The lower homologues are non-psychoactive in nature but lack comprehensive scientific validation regarding neuroprotective potential. The present study describes the synthesis of non-psychoactive lower homologues of THC-type compounds and their neuroprotective potential. Both natural tetrahydro-cannabiorcol (trans-(-)-Δ9-THCO) and unnatural Δ9-tetrahydrocannabiorcol (trans-(+)-Δ9-THCO) were successfully synthesized starting from R-limonene and S-limonene, respectively, and investigated for neuroprotective potential in cellular models. The structures of both enantiomers were confirmed by NMR, HMBC, HQSC, NOESY, and COSY experiments. Results indicated that both enantiomers were nontoxic to the cells treated up to 50 µM. Neuroprotective properties of the enantiomers showed that treatments could significantly reverse the corticosterone-induced toxicity in SH-SY5Y cells and simultaneously cause elevated expression of brain-derived neurotrophic factor (BDNF). It was also observed that unnatural trans-(+)-Δ9-THCO displayed better activity than the natural enantiomer and can be further explored for its potential use in neuropathological ailments.


Assuntos
Canabinoides , Neuroblastoma , Humanos , Dronabinol/farmacologia , Limoneno , Neuroblastoma/tratamento farmacológico , Canabinoides/química , Canabinoides/farmacologia
12.
Bone ; 181: 117035, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342278

RESUMO

Legalized use of cannabis for medical or recreational use is becoming more and more common. With respect to potential side-effects on bone health only few clinical trials have been conducted - and with opposing results. Therefore, it seems that there is a need for more knowledge on the potential effects of cannabinoids on human bone cells. We studied the effect of cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) (dose range from 0.3 to 30 µM) on human osteoclasts in mono- as well as in co-cultures with human osteoblast lineage cells. We have used CD14+ monocytes from anonymous blood donors to differentiate into osteoclasts, and human osteoblast lineage cells from outgrowths of human trabecular bone. Our results show that THC and CBD have dose-dependent effects on both human osteoclast fusion and bone resorption. In the lower dose ranges of THC and CBD, osteoclast fusion was unaffected while bone resorption was increased. At higher doses, both osteoclast fusion and bone resorption were inhibited. In co-cultures, both osteoclastic bone resorption and alkaline phosphatase activity of the osteoblast lineage cells were inhibited. Finally, we observed that the cannabinoid receptor CNR2 is more highly expressed than CNR1 in CD14+ monocytes and pre-osteoclasts, but also that differentiation to osteoclasts was coupled to a reduced expression of CNR2, in particular. Interestingly, under co-culture conditions, we only detected the expression of CNR2 but not CNR1 for both osteoclast as well as osteoblast lineage nuclei. In line with the existing literature on the effect of cannabinoids on bone cells, our current study shows both stimulatory and inhibitory effects. This highlights that potential unfavorable effects of cannabinoids on bone cells and bone health is a complex matter. The contradictory and lacking documentation for such potential unfavorable effects on bone health as well as other potential effects, should be taken into consideration when considering the use of cannabinoids for both medical and recreational use.


Assuntos
Reabsorção Óssea , Canabidiol , Canabinoides , Humanos , Canabidiol/farmacologia , Canabidiol/metabolismo , Osteoclastos/metabolismo , Dronabinol/farmacologia , Dronabinol/metabolismo , Canabinoides/farmacologia , Canabinoides/metabolismo , Reabsorção Óssea/metabolismo
13.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338960

RESUMO

The lipid endocannabinoid system has recently emerged as a novel therapeutic target for several inflammatory and tissue-damaging diseases, including those affecting the cardiovascular system. The primary targets of cannabinoids are cannabinoid type 1 (CB1) and 2 (CB2) receptors. The CB2 receptor is expressed in the cardiomyocytes. While the pathological changes in the myocardium upregulate the CB2 receptor, genetic deletion of the receptor aggravates the changes. The CB2 receptor plays a crucial role in attenuating the advancement of myocardial infarction (MI)-associated pathological changes in the myocardium. Activation of CB2 receptors exerts cardioprotection in MI via numerous molecular pathways. For instance, delta-9-tetrahydrocannabinol attenuated the progression of MI via modulation of the CB2 receptor-dependent anti-inflammatory mechanisms, including suppression of pro-inflammatory cytokines like IL-6, TNF-α, and IL-1ß. Through similar mechanisms, natural and synthetic CB2 receptor ligands repair myocardial tissue damage. This review aims to offer an in-depth discussion on the ameliorative potential of CB2 receptors in myocardial injuries induced by a variety of pathogenic mechanisms. Further, the modulation of autophagy, TGF-ß/Smad3 signaling, MPTP opening, and ROS production are discussed. The molecular correlation of CB2 receptors with cardiac injury markers, such as troponin I, LDH1, and CK-MB, is explored. Special attention has been paid to novel insights into the potential therapeutic implications of CB2 receptor activation in MI.


Assuntos
Canabinoides , Infarto do Miocárdio , Receptor CB1 de Canabinoide , Humanos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Canabinoides/metabolismo , Endocanabinoides/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Receptores de Canabinoides/metabolismo , Dronabinol/farmacologia
14.
Expert Opin Drug Metab Toxicol ; 20(1-2): 73-93, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38258511

RESUMO

INTRODUCTION: (-)-Δ9-tetrahydrocannabinol (THC) is the main psychoactive component of cannabis. Cannabis is the most widely used drug of abuse by pregnant individuals, but its maternal-fetal safety is still unclear. The changes in THC disposition during pregnancy may affect THC safety and pharmacology. AREAS COVERED: This review summarizes the current literature on THC metabolism and pharmacokinetics in humans. It provides an analysis of how hormonal changes during pregnancy may alter the expression of cannabinoid metabolizing enzymes and THC and its metabolite pharmacokinetics. THC is predominately (>70%) cleared by hepatic metabolism to its psychoactive active metabolite, 11-OH-THC by cytochrome P450 (CYP) 2C9 and to other metabolites (<30%) by CYP3A4. Other physiological processes that change during pregnancy and may alter cannabinoid disposition are also reviewed. EXPERT OPINION: THC and its metabolites disposition likely change during pregnancy. Hepatic CYP2C9 and CYP3A4 are induced in pregnant individuals and in vitro by pregnancy hormones. This induction of CYP2C9 and CYP3A4 is predicted to lead to altered THC and 11-OH-THC disposition and pharmacodynamic effects. More in vitro studies of THC metabolism and induction of the enzymes metabolizing cannabinoids are necessary to improve the prediction of THC pharmacokinetics in pregnant individuals.


Assuntos
Canabinoides , Cannabis , Alucinógenos , Feminino , Gravidez , Humanos , Dronabinol/metabolismo , Dronabinol/farmacologia , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP3A , Canabinoides/farmacologia , Cannabis/metabolismo
15.
Pharmacol Biochem Behav ; 236: 173718, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272272

RESUMO

In addition to overt somatic symptoms, cannabinoid withdrawal can also manifest as disruptions in motivation and attention. Experimental animal models using operant-conditioning approaches reveal these differences, in either antagonist-precipitated or spontaneous withdrawal models. However, these processes have yet to be characterized in the same subjects simultaneously. To differentiate between motivational and attentional processes disrupted in cannabinoid withdrawal, the current study used a response alternation task in which a fixed-ratio (FR) schedule repeatedly alternated between two spatially distinct response options throughout daily training sessions. This task yielded traditional measures of motivation (e.g., response latency) as well as attention (e.g., responses to the incorrect side). After two weeks of training, male and female C57BL/6 J mice either received vehicle or Δ9-THC (10 mg/kg, s.c.) twice daily for 5 days. On the 6th day, all mice received their final injection of vehicle or Δ9-THC followed 30 min later by injection of the CB1 receptor selective inverse agonist rimonabant (2 mg/kg, i.p.) to precipitate withdrawal. Testing continued for 3 days post-rimonabant to assess how THC abstinence impacted task performance. Whereas rimonabant decreased response rates to equal degrees in THC-treated and vehicle-treated mice, THC-treated mice showed longer session times, longer response latencies, and more errors per reinforcer. Only THC-treated mice showed a longer latency to switch after committing an error reflecting that precipitated withdrawal impacted measures of both motivation and attention. During the 3-day abstinence window, performance of vehicle-treated mice returned to baseline, but THC-treated mice continued to show disruptions in motivational measures. Importantly, attentional measures (errors and latency to switch after an error) were unaffected by THC abstinence. These data suggest that precipitated and "spontaneous" cannabinoid withdrawal may be qualitatively and quantitatively distinct withdrawal conditions with precipitated withdrawal disrupting both attentional and motivational processes, while abstinence may only affect motivation.


Assuntos
Canabinoides , Síndrome de Abstinência a Substâncias , Humanos , Camundongos , Masculino , Feminino , Animais , Dronabinol/farmacologia , Rimonabanto , Piperidinas , Pirazóis/farmacologia , Agonismo Inverso de Drogas , Camundongos Endogâmicos C57BL , Receptor CB1 de Canabinoide
16.
Life Sci ; 340: 122447, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246518

RESUMO

AIMS: Preclinical studies have found that chronic ∆9-tetrahydrocannabinol (THC) treatment is directly associated with weight gain when introduced during adolescence and adulthood, but the effect of prenatal THC is unclear. Clinical studies have demonstrated prenatal exposure to THC is a prospective predictor of increased health risks associated with obesity. Our study aims to examine prenatal THC impact on obesity risks in males and females throughout adolescence using a clinically relevant inhalation model. METHODS: Pregnant rats were exposed to one of the following from gestational day 2 through birth: 10 mg THC, 40 mg THC, or air. Daily 10-min inhalations were conducted in each animal from 0900 to 1200. Offspring from each treatment group were given either a high-fat diet (HFD) or a normal diet (ND). Food and bodyweights were collected daily, while circadian activity, locomotion, and exercise were measured periodically (PND 21-60). Pregnancy weight gain and birth weight were collected to determine early-life developmental effects. RESULTS: Rats prenatally treated with low-dose THC (LDTHC) generally had lower dark-cycle activity compared with control counterparts, but this altered activity was not observed at the higher dose of THC (HDTHC). In terms of open-field activity, THC doses displayed a general increase in locomotion. In addition, the LDTHC male rats in the ND showed significantly greater exploratory behavior. Prenatal THC had dose-dependent effects on maternal weight gain and birth weight. CONCLUSIONS: Overall, our findings indicate there are some activity-related and developmental effects of prenatal THC, which may be related to obesity risks later in life.


Assuntos
Dronabinol , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Ratos , Masculino , Animais , Humanos , Peso ao Nascer , Dronabinol/farmacologia , Dieta , Obesidade/etiologia , Locomoção
17.
Psychopharmacology (Berl) ; 241(3): 585-599, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38282127

RESUMO

RATIONALE: Use of electronic drug delivery systems (EDDS, "e-cigarettes") to ingest nicotine and Δ9-tetrahydrocannabinol (THC) has surged in adolescents in the USA; five times as many high-school seniors vape nicotine daily using tobacco. At the same time, 19.5% of seniors use cannabis at least monthly, with 12% using EDDS to deliver it. OBJECTIVES: This study was conducted to examine the impact of repeated adolescent vapor inhalation of nicotine and THC in rats. METHODS: Female Sprague-Dawley rats were exposed to 30-min sessions of vapor inhalation, twice daily, from post-natal day (PND) 31 to PND 40. Conditions included vapor from the propylene glycol (PG) vehicle, nicotine (60 mg/mL in the PG), THC (100 mg/mL in the PG), or the combination of nicotine (60 mg/mL) and THC (100 mg/mL). Rats were assessed on wheel activity, heroin anti-nociception and nicotine and heroin vapor volitional exposure during adulthood. RESULTS: Nicotine-exposed rats exhibited few differences as adults, but were less sensitive to anti-nociceptive effects of heroin (1 mg/kg, s.c.). THC- and THC + nicotine-exposed rats were less spontaneously active, and obtained fewer nicotine vapor deliveries as adults. In contrast, THC-exposed rats obtained volitional heroin vapor at rates indistinguishable from the non-THC-exposed groups. Repeated THC exposure also caused tolerance to temperature-disrupting effects of THC (5 mg/kg, i.p.). CONCLUSIONS: These studies further confirm that the effects of repeated vapor exposure to THC in adolescence last into early to middle adulthood, including decreased volitional consumption of nicotine. Effects of repeated nicotine in adolescence were comparatively minor.


Assuntos
Cannabis , Sistemas Eletrônicos de Liberação de Nicotina , Ratos , Animais , Feminino , Dronabinol/farmacologia , Nicotina/farmacologia , Ratos Sprague-Dawley , Heroína
18.
Andrology ; 12(1): 56-67, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37042163

RESUMO

BACKGROUND: While cannabis is the most widely used recreational drug in the world, the effects of phytocannabinoids on semen parameters and reproductive hormones remain controversial. Cannabinoid receptors are activated by these compounds at each level of the hypothalamus-pituitary-gonadotropic axis. OBJECTIVES: To assess the impact of the consumption of Δ-9-tetrahydrocannabinol and cannabidiol on semen parameters, as well as on male reproductive hormone and endocannabinoid levels, in a cohort of young Swiss men. MATERIALS AND METHODS: The individuals in a Swiss cohort were divided according to their cannabis consumption. In the cannabis user group, we determined the delay between the last intake of cannabis and sample collection, the chronicity of use and the presence of cannabidiol in the consumed product. Urinary Δ-9-tetrahydrocannabinol metabolites were quantified via gas chromatography-mass spectrometry. Blood phytocannabinoids, endocannabinoids and male steroids were determined via liquid chromatography-mass spectrometry/mass spectrometry, and other hypothalamus-pituitary-gonadotropic axis hormones were determined via immunoassays. Semen parameters such as sperm concentration and motility were recorded using computer-assisted sperm analysis. RESULTS: Anandamide, N-palmitoyl ethanolamide, androgens, estradiol and sex hormone binding globulin levels were all higher in cannabis users, particularly in chronic, recent and cannabidiol-positive consumers. Gonadotropin levels were not significantly different in these user subpopulations, whereas prolactin and albumin concentrations were lower. In addition, cannabis users had a more basic semen pH and a higher percentage of spermatozoa with progressive motility. However, the two latter observations seem to be related to a shorter period of sexual abstinence in this group rather than to the use of cannabis. CONCLUSIONS: Because both cannabidiol and Δ-9-tetrahydrocannabinol are frequently used by men of reproductive age, it is highly relevant to elucidate the potential effects they may have on human reproductive health. This study demonstrates that the mode of cannabis consumption must be considered when evaluating the effect of cannabis on semen quality.


Assuntos
Canabidiol , Cannabis , Humanos , Masculino , Análise do Sêmen , Canabidiol/farmacologia , Dronabinol/farmacologia , Suíça , Sementes , Prolactina
19.
Behav Sleep Med ; 22(2): 150-167, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-37255232

RESUMO

INTRODUCTION: Cannabis is increasingly used to self-treat anxiety and related sleep problems, without clear evidence of either supporting or refuting its anxiolytic or sleep aid effects. In addition, different forms of cannabis and primary cannabinoids ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD) have differing pharmacological effects. METHODS: Thirty days of daily data on sleep quality and cannabis use were collected in individuals who use cannabis for mild-to-moderate anxiety (n = 347; 36% male, 64% female; mean age = 33 years). Participants self-reported both the form (flower or edible) and the ratio of THC to CBD in the cannabis used during the observation period. RESULTS: Individuals who reported cannabis use on a particular day also reported better sleep quality the following night. Moderation analyses showed that better perceived sleep after cannabis use days was stronger for respondents with higher baseline affective symptoms. Further, respondents who used cannabis edibles with high CBD concentration reported the highest perceived quality of sleep. CONCLUSIONS: Among individuals with affective symptoms, naturalistic use of cannabis was associated with better sleep quality, particularly for those using edible and CBD dominant products.


Assuntos
Canabidiol , Cannabis , Fumar Maconha , Masculino , Humanos , Feminino , Adulto , Qualidade do Sono , Dronabinol/análise , Dronabinol/farmacologia , Fumar Maconha/psicologia , Canabidiol/uso terapêutico , Canabidiol/análise , Canabidiol/farmacologia , Ansiedade/complicações
20.
Artigo em Inglês | MEDLINE | ID: mdl-37918558

RESUMO

The causality in the association between cannabis use and the risk of developing schizophrenia has been the subject of intense debate in the last few years. The development of animal models recapitulating several aspects of the disease is crucial for shedding light on this issue. Given that maternal infections are a known risk for schizophrenia, here, we used the maternal immune activation (MIA) model combined with THC exposure during adolescence to examine several behaviours in rats (working memory in the Y maze, sociability in the three-chamber test, sucrose preference as a measure, prepulse inhibition and formation of incidental associations) that are similar to the different symptom clusters of the disease. To this end, we administered LPS to pregnant dams and when the offspring reached adolescence, we exposed them to a mild dose of THC to examine their behaviour in adulthood. We also studied several parameters in the dams, including locomotor activity in the open field, elevated plus maze performance and their response to LPS, that could predict symptom severity of the offspring, but found no evidence of any predictive value of these variables. In the adult offspring, MIA was associated with impaired working memory and sensorimotor gating, but surprisingly, it increased sociability, social novelty and sucrose preference. THC, on its own, impaired sociability and social memory, but there were no interactions between MIA and THC exposure. These results suggest that, in this model, THC during adolescence does not trigger or aggravate symptoms related to schizophrenia in rats.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Esquizofrenia , Gravidez , Humanos , Feminino , Ratos , Animais , Dronabinol/farmacologia , Lipopolissacarídeos , Modelos Animais de Doenças , Comportamento Animal/fisiologia , Transtornos da Memória/complicações , Sacarose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...